Answer:
see below
Explanation:
Let t = time (in hours)
a) i) First 105 km of journey
![\mathsf{speed=(distance)/(time)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/heri64lu531l7phgive90ut4b0de62jji5.png)
![\implies x=(105)/(t_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/z4i8tk3ut37n737ezwwkwox4cnkpfms0hh.png)
![\implies t_1=(105)/(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5inycn3r2alxuq4i23su5s632f4aany5wx.png)
ii) Rest of journey
distance = 190 - 105 = 85 km
speed =
km/h
![\mathsf{speed=(distance)/(time)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/heri64lu531l7phgive90ut4b0de62jji5.png)
![\implies x+12=(85)/(t_2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ck49r3vt0s6qeqlliqzpbqq6ssqmdnkoqe.png)
![\implies t_2=(85)/(x+12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7txmqmbivkd78t5afnvfxcqzt1wfv8bh3z.png)
b) 3 hours 15 minutes = 3.25 hours
total time =
![t_1+t_2=3.25](https://img.qammunity.org/2023/formulas/mathematics/high-school/106too48stnp050nntzz0tfvp9h05wnbns.png)
![\implies (105)/(x)+(85)/(x+12) =3.25](https://img.qammunity.org/2023/formulas/mathematics/high-school/1tlqnsnp5x2b8gigwraikvq4nd4byktlq4.png)
![\implies (105(x+12)+85x)/(x(x+12)) =3.25](https://img.qammunity.org/2023/formulas/mathematics/high-school/1m7udu9c616unn7k18n2q92ick1v6zb4d5.png)
![\implies 105(x+12)+85x =3.25x(x+12)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2y9j33inuau2mipdm3u59dijvk2jv0ezdh.png)
![\implies 105x+1260+85x =3.25x^2 +39x](https://img.qammunity.org/2023/formulas/mathematics/high-school/os7rw80lgk5x6h0kbva54oyegzl6aw1qae.png)
![\implies 3.25x^2-151x-1260=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/lp22nvlcm6e13yicsmhtte1blflikprr1q.png)
multiply by 4:
![\implies 13x^2-604x-5040=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/jyjlwnzkzaaf13v8z0gyxn3s9gicz3gau0.png)
c)
![\textsf{quadratic formula} \ x=(-b \pm√(b^2-4ac) )/(2a)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/okp25qsoz4ga5vqrys6d72j0ydw5lccp7x.png)
![\implies x=(604 \pm√((-604)^2-4(13)(-5040)) )/(2(13))}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z6284fysozp6ujsw8262aguboijiafb3dy.png)
![\implies x=(604 \pm√(626896) )/(26)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mmltr9ms859amo0f7qkiwllhxwv4ns4kwr.png)
![\implies x = 53.68, x=-7.22](https://img.qammunity.org/2023/formulas/mathematics/high-school/b2q1e3ujr3gs5hh7wtld3z1a4s372bueq8.png)
(to 2 decimal places)
d) time ≥ 0, therefore, x = 53.68 only
Substitute x = 53.68 into the expression for
and solve for
:
![\implies t_1=(105)/(53.68)=1.955912... \textsf{hours}=\textsf{1 hr 57 min}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uu3rhzhlo93ukb2viagw5goipsk9s3lnxf.png)