171k views
3 votes
A 45% sucrose solution lost 260 mL by evaporation. After evaporation what is the sucrose concentration in the remaining 300 mL? Round your final answer to 2 decimal places if necessary.

User Fation
by
4.1k points

1 Answer

2 votes

84%

Step-by-step explanation

the concentration is given by


\text{concentration = }\frac{volume\text{ of sucrose}}{\text{total volume}}\cdot100\text{ \%}

hence

Step 1

for the initial solution


45\text{ \%=}\frac{volumesucre}{\text{total volume}}\cdot100\rightarrow equation(1)

Step 2

after the evaporation


\begin{gathered} x\text{ \%=}\frac{volumesucrose}{(initial\text{ volume-evaporatio)}} \\ x\text{ \%=}\frac{volumesucrose}{(initial\text{ volume-260)}=300} \\ x\text{ \%=}(volumesucrose)/(300)\rightarrow equation(2) \end{gathered}


\begin{gathered} (initial\text{ volume-260)}=300 \\ add\text{ 260 in both sides} \\ (initial\text{ volume-260)+260}=300+260 \\ initial\text{ volume=560} \end{gathered}

now, replace this value in step 1 to find the initial volume of sucrose


\begin{gathered} 45\text{ \%=}\frac{volumesucre}{\text{5}60} \\ 0.45\cdot560mL=\text{volume sucrose} \\ 252\text{ mL = Volume of sucrose} \end{gathered}

now, replace this value in eq(2)


\begin{gathered} x\text{ \%=}(volumesucrose)/(300)\rightarrow equation(2) \\ x\text{ \%=}(252)/(300)\cdot100 \\ x\text{ \%=84 \%} \end{gathered}

therefore, the answer is

84%

I hope this helps you

User Harry Jarman
by
3.9k points