183,490 views
5 votes
5 votes
Given that f(x) is a cubic function with zeros at -3, 0, and 7, find an equation for f(x) given that f(-8) = -5.

User Camiblanch
by
2.8k points

1 Answer

13 votes
13 votes

Answer:


\huge\boxed{f(x)=(1)/(120)x^3-(1)/(30)x^2-(7)/(40)x}

Explanation:


f(x)=a(x+3)(x-0)(x-7)=ax(x+3)(x-7)\\\\=ax\bigg((x)(x)+(x)(-7)+(3)(x)+(3)(-7)\bigg)\\\\=ax(x^2-7x+3x-21)=ax(x^2-4x-21)\\\\=(ax)(x^2)+(ax)(-4x)+(ax)(-21)\\\\=ax^3-4ax^2-21ax\qquad(*)\\\\f(-8)=-5


\text{substitute}\ x=-8\\\\f(-8)=(a)(-8)^3-(4a)(-8)^2-(21)(-8)a=-512a-(4a)(64)+168a\\\\=-512a-256a+168a=-600a\\\\f(-8)=-5\\\\\text{therefore}\\\\-600a=-5\qquad|\text{divide both sides by (-600)}\\\\a=(-5)/(-600)\\\\a=(1)/(120)


\text{Substitute to}\ (*):\\\\f(x)=(1)/(120)x^3-4\cdot(1)/(120)x^2-21\cdot(1)/(120)x=(1)/(120)x^3-(1)/(30)x^2-(7)/(40)x

User James Blake
by
3.6k points