Hello there. To solve this question, we have to remember some properties about derivatives.
Given the following expression:
![\begin{gathered} \sin(\theta)=(x)/(z) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7qq3hn3j7a2la0qvxdbwinocapxqbu2tth.png)
Whereas x, z and θ are functions of the time, t.
We know that
![\frac{\mathrm{d}x}{\mathrm{d}t}=-60](https://img.qammunity.org/2023/formulas/mathematics/college/8kr3ppjz9z5ndljg1r0ae6b24hh5owwrdo.png)
We want to determine the value for
![\frac{\mathrm{d}\theta}{\mathrm{d}t}](https://img.qammunity.org/2023/formulas/mathematics/college/k2qc2i5k0zguu5oevcwqjm19iaefscwf7d.png)
When z = 2, θ = π/6 and
![z=2\text{ miles},\text{ }\theta=(\pi)/(6)\text{ radians and }\frac{\mathrm{d}z}{\mathrm{d}t}=-55\text{ mph}](https://img.qammunity.org/2023/formulas/mathematics/college/6r48blr521p743ljjhpk287tfnfh6ud7cv.png)
For this, we have to use implicit differentiation.
Since the variables are function of time, we differentiate both sides of the equation with respect to the time t.
![\frac{\mathrm{d}}{\mathrm{d}t}(\sin(\theta))=\frac{\mathrm{d}}{\mathrm{d}t}\left((x)/(z)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/9ffoonwnpwky7t2eqyky0xpwi12ratvadk.png)
Knowing the Chain Rule:
![(d)/(dt)(f(x(t))=(d(f(x(t)))/(dx)\cdot(dx)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/6v1wqf6545rgh6ty7ghn5qg9zymuq9ezfk.png)
And the derivative of the sine and quotient rules, we get
![\cos(\theta)\cdot\frac{\mathrm{d}\theta}{\mathrm{d}t}=\frac{\frac{\mathrm{d}x}{\mathrm{d}t}\cdot\,z-x\cdot\frac{\mathrm{d}z}{\mathrm{d}t}}{{z^2}}](https://img.qammunity.org/2023/formulas/mathematics/college/p118157i1x91aof4joaqb142g98kl41kpw.png)
Plugging the values, we get
![\cos\left((\pi)/(6)\right)\cdot\frac{\mathrm{d}\theta}{\mathrm{d}t}=((-60)\cdot2-x\cdot(-55))/(2^2)](https://img.qammunity.org/2023/formulas/mathematics/college/3xzsvzy11ypa1k3kopwoykb3ysbbx5t73o.png)
![\cos\left((\pi)/(6)\right)\cdot\frac{\mathrm{d}\theta}{\mathrm{d}t}=((-60)\cdot2-x\cdot(-55))/(2^2)](https://img.qammunity.org/2023/formulas/mathematics/college/3xzsvzy11ypa1k3kopwoykb3ysbbx5t73o.png)
Of course, to find the value of x, we use the values for the angle and z in the former expression:
![\sin\left((\pi)/(6)\right)=(x)/(2)\Rightarrow(1)/(2)=(x)/(2)\Rightarrow x=1](https://img.qammunity.org/2023/formulas/mathematics/college/fwnd6yly05qu0eyogkr2c64tzgkdhf3ueh.png)
Therefore we get
![\begin{gathered} (√(3))/(2)\cdot\frac{\mathrm{d}\theta}{\mathrm{d}t}=(-120+55)/(4) \\ \\ (√(3))/(2)\frac{\mathrm{d}\theta}{\mathrm{d}t}=-(65)/(4) \\ \\ \frac{\mathrm{d}\theta}{\mathrm{d}t}=-(65)/(2√(3)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rjk58eomw4kfja9jouwiy1fmpgdciv6fg2.png)
Using a calculator, we find a number accurate to two decimal places:
![\frac{\mathrm{d}\theta}{\mathrm{d}t}\approx-18.76\text{ radians per hour}](https://img.qammunity.org/2023/formulas/mathematics/college/5h2ivwlyby2d42edi726uzy8263hnz3z97.png)
or rph.