106k views
0 votes

\sqrt[3]{27x {}^(15)y {}^(72) }Simply using absolute values as necessary

User Dennlinger
by
3.6k points

1 Answer

5 votes

one way to see this kind of problems is knowing that:


\sqrt[3]{x}^2=x^{(2)/(3)}^{}

so, using sqrt properties


\sqrt[3]{27\cdot x^(15)\cdot y^(72)}=\sqrt[3]{27}\cdot\sqrt[3]{x^(15)}\cdot\sqrt[3]{y^(72)}
\sqrt[3]{27}\cdot\sqrt[3]{x^(15)}\cdot\sqrt[3]{y^(72)}=3\cdot x^{(15)/(3)}\cdot y^{(72)/(3)}
3\cdot x^{(15)/(3)}\cdot y^{(72)/(3)}=3\cdot x^5\cdot y^(24)

So the answer is=


3\cdot x^5\cdot y^(24)

User Ladonya
by
3.4k points