86.6k views
5 votes
How do we do this system of equations?
1. \: (3)/(x - 2y) + (2)/(2x + y) = 3
(2)/(x - 2y) - (1)/(4x + 2y) = (1)/(6)

User Scruffy
by
8.2k points

1 Answer

1 vote

SOLUTION

Write out the equation given


\begin{gathered} (3)/(x-2y)+(2)/(2x+y)=3\ldots\text{equation 1} \\ (2)/(x-2y)-(1)/(4x+2y)=(1)/(6)\ldots\text{equation 2} \end{gathered}

Rewrite the equation as


\begin{gathered} \text{let} \\ x-2y=p \\ 2x+y=q \end{gathered}

Then, the equation 1 becomes


(3)/(p)+(2)/(q)=3

Then, equation 2 becomes


\begin{gathered} (2)/(x-2y)-(1)/(4x+2y)=(1)/(6) \\ (2)/(x-2y)-(1)/(2(2x+y))=(1)/(6) \\ \text{Then} \\ (2)/(p)-(1)/(2q)=(1)/(6) \end{gathered}

Then, the new equation becomes


\begin{gathered} (3)/(p)+(2)/(q)=3 \\ \text{and } \\ (2)/(p)-(1)/(2q)=(1)/(6) \end{gathered}

Then we solve the system of equation above


\begin{gathered} (3)/(p)=3-(2)/(q) \\ \text{The}n \\ p=-(3q)/(2-3q) \end{gathered}

Then , substitute into the second equation, we have


\begin{gathered} \begin{bmatrix}(2)/(-(3q)/(2-3q))-(1)/(2q)=(1)/(6)\end{bmatrix} \\ \text{Hence },\text{ simplify we have } \\ \begin{bmatrix}(12q-11)/(6q)=(1)/(6)\end{bmatrix} \end{gathered}

Then isolate q from the eequation above, we have


\begin{gathered} (12q-11)/(6q)=(1)/(6) \\ 6q=6(12q-11) \\ 6q=72q-66 \\ 6q-72q=-66 \\ -66q=-66 \end{gathered}

Hence


q=-(66)/(-66)=1

Hence q=1

Substitute to find the value of p, we have


\begin{gathered} p=-(3q)/(2-3q) \\ p=-(3(1))/(2-3(1))=-(3)/(2-3)=-(3)/(-1)=3 \end{gathered}

P = 3

Recall that


\begin{gathered} p=x-2y \\ q=2x+y \\ \text{Then } \\ 3=x-2y \\ 1=2x+y \end{gathered}

Hence


\begin{gathered} x-2y=3\Rightarrow x=3+2y \\ 2(3+2y)+y=1\Rightarrow6+4y+y=1 \\ \text{Then } \\ 5y=1-6 \\ 5y=-5 \\ \text{Hence } \\ y=-1 \end{gathered}

Thus,


\begin{gathered} x=3+2y \\ x=3+2(-1)=3-2=1 \\ x=1 \end{gathered}

Therefore

x=1, y= -1

User Gbdcool
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories