We have got the function:
![f(x)=4x^2-8x+4](https://img.qammunity.org/2023/formulas/mathematics/college/4uknf0kgl719m80j2mni723fzcg36sq391.png)
If we want to calculate:
![f(t-3)](https://img.qammunity.org/2023/formulas/mathematics/college/l6gsw51vp2zxklh826jcxooifhg4jgcz5p.png)
We can simply substitute every "x" in the function with "t-3". We need to use parenthesis when we do that:
![f(t-3)=4(t-3)^2-8(t-3)+4](https://img.qammunity.org/2023/formulas/mathematics/college/bolzrz7x4xwz5i7wgrm51v2pr2yubaf0ok.png)
To get an answer that corresponds to one of the alternatives, we will need to simplify. First, let's solve the square and the parenthesis:
![\begin{gathered} f(t-3)=4(t^2-6t+9)-8t+24+4 \\ f(t-3)=4t^2-24t+36-8t+28 \\ f(t-3)=4t^2-32t+64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ksdn06z1rnm9n5t1or6l3820x87fw66thd.png)
This corresponds to alternative 1.