Since two points define a line, we can take two points through which the line passes and find its equation.
From the word problem, we know that when t = 0, the original value is equal to $43,000. Then, we have a first ordered pair.
![(0,43000)](https://img.qammunity.org/2023/formulas/mathematics/college/o3k41emeibfpf67i8s7zmfyyxmz0t4opad.png)
Since the value is reduced by $4300 each year, we have a second ordered pair.
![\begin{gathered} 43000-4300=38700 \\ (1,38700) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8gjs68u718m5418znri1lq2quaxwnvn1qx.png)
Now, we find the slope of the line using the following formula.
![\begin{gathered} m=(y_(2)-y_(1))/(x_(2)-x_(1)) \\ \text{ Where} \\ (x_1,y_1)\text{ and }(x_2,y_2)\text{ are two points through which the line passes} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/stwwpaeme7rvidc6vwyj8frce7gdnbjr69.png)
![\begin{gathered} (x_1,y_1)=(0,43000) \\ (x_2,y_2)=(1,38700) \\ m=(38700-43000)/(1-0) \\ m=(-4300)/(1) \\ m=-4300 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ywh8784ze3hmyytnm2zu8srvimhgcql5v.png)
Finally, we can use and solve for y the point-slope formula.
![y-y_1=m(x-x_1)\Rightarrow\text{ Point-slope formula}](https://img.qammunity.org/2023/formulas/mathematics/college/5ipw47iqsc7zkaiecqhzs36ibxx6dbxl58.png)
Since the situation described depends on the time t, we replace x with t in the formula.
![\begin{gathered} y-43000=-4300(t-0) \\ y-43000=-4300t \\ \text{ Add 43000 from both sides} \\ y-43000+43000=-4300t+43000 \\ y=-4300t+43000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a6k06jvclbnsp9t30kejqic2knbaoefk5x.png)
Therefore, the linear equation that models the value y of the machinery at the end of year t is:
![y=-4300t+43000](https://img.qammunity.org/2023/formulas/mathematics/college/nvotlomvzu9nadafwwzynh50ip23l73jmd.png)