64.7k views
4 votes
Please send help this is homework , and I wasn’t here to class I need help thank you

Please send help this is homework , and I wasn’t here to class I need help thank you-example-1
User MOnsDaR
by
7.9k points

1 Answer

3 votes

Solution

Step 1:

Apply double angle theorem.


\begin{gathered} cos\left(\alpha+\beta\right)\text{ = cos}\alpha cos\beta\text{ - sin}\alpha sin\beta \\ cos(\alpha-\beta)=cos\text{\alpha cos\beta{\text{{\text{+s}}}\imaginaryI\text{{\text{n}}}}\alpha s}\imaginaryI\text{n\beta} \\ sin(\alpha+\beta)=sin\text{\alpha cos\beta{\text{{\text{+s}}}\imaginaryI\text{{\text{n}}}}}\beta cos\alpha \\ s\imaginaryI n(\alpha-\beta)=s\imaginaryI n\text{\alpha cos\beta-sin}\beta cos\alpha \end{gathered}

Step 2:

Write the expression and substitute the values.


(cos\left(\alpha-\beta\right)-cos\left(\alpha+\beta\right))/(sin\left(\alpha-\beta\right)-sin\left(\alpha+\beta\right))

Step 3:


\begin{gathered} \frac{cos\text{\alpha cos}\beta\text{+sin}\alpha s\imaginaryI\text{n\beta-\lparen cos}\alpha cos\beta-sin\alpha sin\beta\text{\rparen}}{s\imaginaryI n\text{\alpha cos\beta- s}\imaginaryI\text{n}\beta cos\alpha-\left(sin\alpha cos\beta+sin\beta cos\alpha\right)} \\ \frac{cos\text{\alpha cos}\beta+\text{s}\imaginaryI\text{n}\alpha s\imaginaryI\text{n\beta-cos}\alpha cos\beta+s\imaginaryI n\alpha s\imaginaryI n\beta}{s\imaginaryI n\text{\alpha cos\beta- s}\imaginaryI\text{n}\beta cos\alpha-s\imaginaryI n\alpha cos\beta-s\imaginaryI n\beta cos\alpha} \\ (2sin\alpha sin\beta)/(-2sin\beta cos\alpha) \\ -tan\alpha \end{gathered}

User Dave Lucre
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories