127k views
2 votes
Use the properties of determinants to find the value of the second determinant, given the value of the first.

Use the properties of determinants to find the value of the second determinant, given-example-1
User Tapas
by
7.5k points

1 Answer

5 votes

det\begin{bmatrix}{s} & {t} & {u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=8sw+4tx+2uv-4uw-8tv-2sx=3

According to the sum property, we have:


\begin{gathered} det\begin{bmatrix}{32-s} & {16-t} & {64-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=det\begin{bmatrix}{32} & {16} & {64} \\ {0} & {0} & {0} \\ {0} & {0} & {0}\end{bmatrix}+det\begin{bmatrix}{-s} & {-t} & {-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix} \\ det\begin{bmatrix}{32} & {16} & {64} \\ {0} & {0} & {0} \\ {0} & {0} & {0}\end{bmatrix}=0 \\ det\begin{bmatrix}{-s} & {-t} & {-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=-det\begin{bmatrix}{s} & {t} & {u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=-3 \\ \therefore det\begin{bmatrix}32{-s} & {16-t} & {64-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=-3 \end{gathered}

User Yhenon
by
7.5k points