![(1)/(57.76r^(8)s^(10))](https://img.qammunity.org/2023/formulas/mathematics/college/n5ha1ib945yct7eqqr9695r48a5kla2xca.png)
Step-by-step explanation
let's remember some rules to operate exponents
![\begin{gathered} a^0=1 \\ (ab)^n=a^nb^n \\ a^(-n)=(1)/(a^n) \\ (a^n)(a^m)=(a^(m+n)) \\ (a^n)^m=a^(m*n) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y0eoabjv22p736ryg4r02tkl7i51jwfbol.png)
so
Step 1
given
![((5)/(8)r^(-1))^0(-7.6r^4s^5)^(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/vsxzoofkggqafl72e9prw88qr2gv0656na.png)
a) the firs term is 1 because any number with exponent zero equals 1 ( first rule)
![\begin{gathered} ((5)/(8)r^(-1))^0(-7.6r^4s^5)^(-2) \\ ((5)/(8)r^(-1))^0=1\text{, hence} \\ (1)(-7.6r^4s^5)^(-2) \\ \begin{equation*} (-7.6r^4s^5)^(-2) \end{equation*} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8lgnpc5m8lmxitenp0la5geubuyugaijpv.png)
b) now, to expand apply the second rule
![\begin{gathered} \begin{equation*} (-7.6r^4s^5)^(-2) \end{equation*} \\ (-7.6r^4s^5)^(-2)=(-7.6^(-2))(r^4)^(-2)(s^5)^(-2) \\ (-7.6r^4s^5)^(-2)=((-7.6)^(-2))(r^(4*-2))(s^(5*-2)) \\ (-7.6r^4s^5)^(-2)=(1)/((-7.6^()2))r^(-8)s^(-10) \\ (-7.6r^4s^5)^(-2)=(1)/(57.76r^8s^(10)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6mqtum908b0ul2itdr5twfmohmmyto9qfz.png)
therefore, the answer is
![(1)/(57.76r^8s^(10))](https://img.qammunity.org/2023/formulas/mathematics/college/ggsuj8sbw1erzb94k502ryns8ihu7e5t7q.png)
I hope this helps you