53.4k views
3 votes
Determine an equivalent algebraic monomial expression for each expression using the laws of exponents.

Determine an equivalent algebraic monomial expression for each expression using the-example-1
User Giedrius D
by
8.7k points

1 Answer

5 votes

(1)/(57.76r^(8)s^(10))

Step-by-step explanation

let's remember some rules to operate exponents


\begin{gathered} a^0=1 \\ (ab)^n=a^nb^n \\ a^(-n)=(1)/(a^n) \\ (a^n)(a^m)=(a^(m+n)) \\ (a^n)^m=a^(m*n) \end{gathered}

so

Step 1

given


((5)/(8)r^(-1))^0(-7.6r^4s^5)^(-2)

a) the firs term is 1 because any number with exponent zero equals 1 ( first rule)


\begin{gathered} ((5)/(8)r^(-1))^0(-7.6r^4s^5)^(-2) \\ ((5)/(8)r^(-1))^0=1\text{, hence} \\ (1)(-7.6r^4s^5)^(-2) \\ \begin{equation*} (-7.6r^4s^5)^(-2) \end{equation*} \end{gathered}

b) now, to expand apply the second rule


\begin{gathered} \begin{equation*} (-7.6r^4s^5)^(-2) \end{equation*} \\ (-7.6r^4s^5)^(-2)=(-7.6^(-2))(r^4)^(-2)(s^5)^(-2) \\ (-7.6r^4s^5)^(-2)=((-7.6)^(-2))(r^(4*-2))(s^(5*-2)) \\ (-7.6r^4s^5)^(-2)=(1)/((-7.6^()2))r^(-8)s^(-10) \\ (-7.6r^4s^5)^(-2)=(1)/(57.76r^8s^(10)) \end{gathered}

therefore, the answer is


(1)/(57.76r^8s^(10))

I hope this helps you

User Jason Livesay
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.