Solution
The first term and common difference of the 4th term is -2 and the 12th term is -42
The nth term of an arithmetic sequence =
![T_n=a+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/college/ujlf0eeq649bapnzc8br3v1ywnl1cgk7ik.png)
![\begin{gathered} T_4=a+3d=-2............(1) \\ T_(12)=a+11d=-42.........(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sbqjmuv083diac1456h7b813bhml0nw61r.png)
Using elimination method to solve the simultaneous equation
![\begin{gathered} a+3d=-2 \\ \frac{a+11d=-42}{-8d\text{ =40}} \\ d=(40)/(-8) \\ d=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2etucv9n9a981oxheq9eulc650pdjban3o.png)
Substitute the value of d in equation 1
![\begin{gathered} a+3d=-2 \\ a+3(-5)=-2 \\ a-15=-2 \\ a=-2+15 \\ a=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ttxhqbp2pxnc217inhirr01u48eg1saxui.png)
Therefore the correct value are
![\begin{gathered} a=13 \\ d=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ridbg15dndcuhq4t83i1vyvfymzy3j7di1.png)