Answer:
![A\approx1,330.99ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/jps4xgu2664xm3p6di7g72sjtvto9zdi7v.png)
Explanations
The formula for calculating the area of the sector is expressed as:
![A=(\theta)/(360)*\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/p4do1mcjlmg8mycjqave7188z6q1cx950o.png)
Given the following parameters
![\begin{gathered} \theta=360-(26+90) \\ \theta=360-116 \\ \theta=244^0\text{ (substended angle)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9f7mto6m8blvtbzd1e2f75btpn19qf3c19.png)
The resulting angle is the sum of the angles of the shaded sectors
Since the radius r = HK = 25ft, hence;
![\begin{gathered} A=(\theta)/(360)*\pi r^2 \\ A=(244)/(360)*\pi(25)^2 \\ A=(244)/(360)*625\pi \\ A=0.6778*1,963.75 \\ A\approx1,330.99ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cngosyp8ut2dc8tssxr7nkl97qr3zih9x2.png)
Hence the area of the shaded sectors to the nearest hundredth is 1330.99 square feet