Step-by-step explanation:
Given;
We are given the following information for a triangle;
![AC=7,BC=9,AB=4](https://img.qammunity.org/2023/formulas/mathematics/college/t2xzjng54byhzm0eo0vry6gx7czhxgavex.png)
Required;
We are required to find the measures of angles A, B and C.
Step-by-step solution;
For any triangle with three sides given/available we can apply the cosine rule to calculate the missing angle(s).
The cosine rule is quoted below;
![\begin{gathered} a^2=b^2+c^2-2bcCosA \\ \\ OR \\ \\ b^2=a^2+c^2-2acCosB \\ \\ OR \\ \\ c^2=a^2+b^2-2abCosC \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w9daru602uga0cwqb6aeyh04biwf4m5kmr.png)
We shall now take angle A to begin with;
We start by making Cos A the subject of the equation;
![\begin{gathered} a^2=b^2+c^2-2bcCosA \\ Add\text{ }2bcCosA\text{ }to\text{ }both\text{ }sides: \\ \\ 2bcCosA+a^2=b^2+c^2 \\ \\ Subtract\text{ }a^{2\text{ }}from\text{ }both\text{ }sides: \\ \\ 2bcCosA=b^2+c^2-a^2 \\ \\ Divide\text{ }both\text{ }sides\text{ }by\text{ }2bc: \\ \\ CosA=(b^2+c^2-a^2)/(2bc) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8iz9ufnqyvxk58gdubtqkbag77shef3r1z.png)
With the refined form of the cosine formula we can now substitute and solve as follows;
![CosA=(7^2+4^2-9^2)/(2(7)(4))](https://img.qammunity.org/2023/formulas/mathematics/college/9dk7gvyeam2t4k78elnu6qs5clvv0sg4kh.png)
![\begin{gathered} CosA=(49+16-81)/(56) \\ \\ CosA=(-16)/(56) \\ \\ CosA=-0.285714285714 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/feqvh9qrns29u5s5n5om8z1qbebve2pz8h.png)
We can now use a calculator to find the value of arccos -0.2857...
![Cos^(-1)A=106.601549599](https://img.qammunity.org/2023/formulas/mathematics/college/90xvys5a7cdvzih19dcogbshgchsaefbhf.png)
Rounded to the nearest degree the angle measure is;
![\angle A=107\degree](https://img.qammunity.org/2023/formulas/mathematics/college/78z0ski653s5syr3jejghjxzg2tdbccoo0.png)
To solve for angle B, we can now apply the sine rule, since we have two sides and one of the angles. The sine rule is quoted below;
![(a)/(SinA)=(b)/(SinB)=(c)/(SinC)](https://img.qammunity.org/2023/formulas/mathematics/college/500u5fk1sfvuspmomuu65xv0kpqhg85g6m.png)
We have angle A, and side length a. We have side length b, which means we can solve for angle B. This is shown below;
![\begin{gathered} (a)/(SinA)=(b)/(SinB) \\ \\ Cross\text{ }multiply: \\ \\ SinB=(b* SinA)/(a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/be681vf4p5e7v98thrgpbqmec8x3re1qwh.png)
![\begin{gathered} SinB=(7* Sin107\degree)/(9) \\ \\ SinB=(7*0.956304755963)/(9) \\ \\ SinB=0.743792587971 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s1rh2u3sb823ac9wf0cgyhfgi9dz2n9dep.png)
We can now use a calculator and find the arcsin of the decimal 0.7437...
![Sin^(-1)B=48.0554959457](https://img.qammunity.org/2023/formulas/mathematics/college/3jpmbarh0g4556mxf8b92qgk2cw5oebj8f.png)
Rounded to the nearest degree, we now have;
![\angle B=48\degree](https://img.qammunity.org/2023/formulas/mathematics/college/bgmmll7y7de2qezjbzw3nsexlftuz89apj.png)
Note that the sum of angles in a triangle all sum up to 180 degrees.
We have angles A and B. We can calculate angle C as follows;
![\begin{gathered} \angle A+\angle B+\angle C=180 \\ \\ 107+48+\angle C=180 \\ \\ 155+\angle C=180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sb7wwch2i7iseqe0fwjkjgglg3ypa5f8cd.png)
Subtract 155 from both sides;
![\angle C=25\degree](https://img.qammunity.org/2023/formulas/mathematics/college/jtzq9n34rl3wrqqb8fxt59keujhmwxjcai.png)
Therefore, the angles are;
ANSWER:
![\begin{gathered} \angle A=107\degree \\ \\ \angle B=48\degree \\ \\ \angle C=25\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dfzeygdo8vk6pv7sl0lld8cht0dba0i5j2.png)