4 mph
Step-by-step explanation
Step 1
let x represents the speed when she bicycle
let y represents the speed when she walks
so,
A woman can bicycle 52 miles in the same time as it takes her to walk 16 miles.
![\begin{gathered} \text{time}=\frac{dis\tan ce}{\text{sped}} \\ time_b=time_w \\ (52)/(x)=(16)/(y) \\ \text{cross multiply} \\ 52\cdot y=16\cdot x \\ 52y=16x\rightarrow equation\text{ (1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/70rp50gampvastqnvnvoz13721upvg81r0.png)
and
She can ride 9 mph faster than she can walk, ( in other words you have to add 9 to the spee when she walks to obtain the speed when she runs,
![x=y+9\rightarrow equation\text{ (2)}](https://img.qammunity.org/2023/formulas/mathematics/college/vrnz7o7k528wyf6iicmu3s8n124ljf51gd.png)
Step 2
solve for y
![\begin{gathered} 52y=16x\rightarrow equation\text{ (1)} \\ x=y+9\rightarrow equation\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fmogs0r26fvt2s764vq9lgegp1zb1czxnz.png)
replace the x value from equation (2) in equation (1).
![\begin{gathered} 52y=16x\rightarrow equation\text{ (1)} \\ 52y=16(y+9) \\ 52y=16y+144 \\ \text{subtract 16 y in both sides} \\ 52y-16y=16y+144-16y \\ 36y=144 \\ \text{divide both sides by 36} \\ (36y)/(36)=(144)/(36) \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lzrbpl0o2b02xof5ai9d87ytagn3qnno9a.png)
so, she can walk to 4 miles per hour
I hope this helps you