92.5k views
4 votes
Find the measure of angle ASolve the right triangle. a=63.63 mi, b= 43.59 mi, C= 45.4 degrees

User Tom Jenkin
by
3.5k points

1 Answer

2 votes

Let us start by illustrating the problem using a diagram:

To find the measure of angle A, we need to first find the length of the side opposite angle C using cosine rule:

Cosine rule is defined to be:


c^2\text{ = a}^2\text{ + b}^2\text{ -2abcosC}

Substituting the given sides and angle:

Let c be the side opposite angle C, b be the side opposite angle B and a be the side opposite angle A


\begin{gathered} c^2\text{ = 63.3}^2\text{ + 43.59}^2\text{ - 2 }*\text{ 63.63 }*\text{ 43.59 }*\text{ cos 45.4} \\ c^2\text{ = 2053.837} \\ c\text{ = }√(2053.837) \\ c\text{ }\approx\text{ 45.32 mi} \end{gathered}

Hence, we have the triangle:

The next step is to use sine rule to find the measure of angle A

Sine rule is defined as:


\frac{sin\text{ A}}{a}\text{ = }\frac{sin\text{ B}}{b}\text{ = }\frac{sin\text{ C}}{c}

Applying sine rule:


\begin{gathered} \frac{sin\text{ C}}{c}\text{ = }\frac{sin\text{ A}}{a}\text{ } \\ \frac{sin\text{ 45.4}}{45.32}\text{ = }\frac{sin\text{ A}}{63.63} \\ sin\text{ A = }\frac{sin\text{ 45.4 }*\text{ 63.63}}{45.32} \\ sin\text{ A = 0.999696} \\ A\text{ }\approx\text{ 88.59} \end{gathered}

Answer:

Measure of angle A = 88.59 degrees

Find the measure of angle ASolve the right triangle. a=63.63 mi, b= 43.59 mi, C= 45.4 degrees-example-1
Find the measure of angle ASolve the right triangle. a=63.63 mi, b= 43.59 mi, C= 45.4 degrees-example-2
User Stsloth
by
3.5k points