A complex number z with modulus |z| and argument θ can be written as:
![z=|z|\cdot(\cos \theta+i\sin \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/rh1p8fnm9fr3rtgpf780xm5xsyod7ntc58.png)
And the nth power of z can be written as:
![z^n=|z|^n\cdot\lbrack\cos (n\theta)+i\sin (n\theta)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/rg7dn9rdnvj7jv5cqzxp2k5s72yo51ycjh.png)
Thus, using the given hint, we have:
![\begin{gathered} |z|=2 \\ \theta=60^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jq8xgikiq1174dw2anuxf8yvnvjc0wt6n5.png)
So, the fourth power of z is given by:
![\begin{gathered} z^4=2^4\cdot\lbrack\cos (4\cdot60^(\circ))+i\sin (4\cdot60^(\circ))\rbrack \\ \\ z^4=16\cdot\lbrack\cos (240^(\circ))+i\sin (240^(\circ))\rbrack \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ng937ajuuiy6g5t03ey3q9kqwls45x837b.png)
Now, notice that:
![\begin{gathered} \cos (240^(\circ))=-(1)/(2) \\ \\ \sin (240^(\circ))=-\frac{\sqrt[]{3}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/33q6xmb1yr7xqbw6zzr5y8ddrdzec3nv75.png)
So, we obtain:
![z^4=16\mleft(-(1)/(2)-\frac{\sqrt[]{3}}{2}i\mright)=-(16)/(2)-(16)/(2)\sqrt[]{3}i=-8-8\sqrt[]{3}i\cong-8-13.9i](https://img.qammunity.org/2023/formulas/mathematics/college/wlttx7yiudjkg818q3vpdk8dy7mmqaum2q.png)
Therefore, option D is correct.