Answer:
4
Explanation:
We first simplify $\sqrt{72}$ and $\sqrt{8}$:\begin{align*}
\sqrt{72} &=\sqrt{36\cdot 2} = \sqrt{36}\cdot \sqrt{2} = 6\sqrt{2},\\
\sqrt{8} &= \sqrt{4\cdot 2} = \sqrt{4}\cdot \sqrt{2} = 2\sqrt{2}.
\end{align*}Then, we have
\[\dfrac{2\sqrt{72}}{\sqrt{8}+\sqrt{2}} = \dfrac{2\left(6\sqrt{2}\right)}{2\sqrt{2} + \sqrt{2}}
= \dfrac{12\sqrt{2}}{3\sqrt{2}} = \dfrac{12}{3}\cdot \dfrac{\sqrt{2}}{\sqrt{2}} = \boxed{4}.\]