Answer:
Option B is correct.
Explanation:
Our expression is:
Let's check all of our options to see if any option is accurate.
Option A:
(n + 8)(n + 11)
=> n² + 11n + 8n + 88
=> n² + 19n + 88
n² + 19n + 88 ≠ n² + 26n + 88
Option B:
(n + 4)(n + 22)
=> n² + 22n + 4n + 88
=> n² + 26n + 88
=> n² + 26n + 88 = n² + 26n + 88 ✔
Option C:
(n + 4)(n + 24)
=> n² + 24n + 4n + 96
=> n² + 28n + 96
=> n² + 28n + 96 ≠ n² + 26n + 88
Option D:
(n + 8)(n + 18)
=> n² + 18n + 8n + 144
=> n² + 26n + 144
=> n² + 26n + 144 ≠ n² + 26n + 88
Conclusion:
So, after working on this problem, we can conclude that Option B is our answer. Hoped this helped