176k views
4 votes
Use the sum and difference identities to determine the exact value of the following expression. If the answer is undefined, write DNE.esin 115 cos35 + cos1 15 sin35

Use the sum and difference identities to determine the exact value of the following-example-1

1 Answer

4 votes

Given the following expression;


\sin 115\cos 35+\cos 115\sin 35

We begin by using the following trig identity;


\cos A\sin B+\cos B\sin A=\sin (A+B)

Using the values of the angles given, we have;


\begin{gathered} \sin 115\cos 35+\cos 115\sin 35=\sin (115+35) \\ =\sin 150 \end{gathered}

We can now rewrite as follows;


\sin 150=\sin (60+90)

We can now apply the summation identity as identified earlier and we'll have;


\sin (60+90)=\sin 60\cos 90+\cos 60\sin 90

At this point we can apply the values of special angles, as shown;


\begin{gathered} \sin 60=\frac{\sqrt[]{3}}{2},\cos 60=(1)/(2) \\ \sin 90=1,\cos 90=0 \end{gathered}

Substitute these and we now have;


\begin{gathered} \sin (60+90)=(\frac{\sqrt[]{3}}{2}*0)+((1)/(2)*1) \\ \sin (60+90)=0+(1)/(2) \\ \sin (60+90)=(1)/(2) \end{gathered}

ANSWER;

The exact value of the given expression is


(1)/(2)

User Benoit Drogou
by
3.2k points