Given the following expression;

We begin by using the following trig identity;

Using the values of the angles given, we have;

We can now rewrite as follows;

We can now apply the summation identity as identified earlier and we'll have;

At this point we can apply the values of special angles, as shown;
![\begin{gathered} \sin 60=\frac{\sqrt[]{3}}{2},\cos 60=(1)/(2) \\ \sin 90=1,\cos 90=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/475gi4atqvsux8ntqduwe3tv4u1cepjo2z.png)
Substitute these and we now have;
![\begin{gathered} \sin (60+90)=(\frac{\sqrt[]{3}}{2}*0)+((1)/(2)*1) \\ \sin (60+90)=0+(1)/(2) \\ \sin (60+90)=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9jxrltse25d36j83boknuqob14u36brz1u.png)
ANSWER;
The exact value of the given expression is
