Answer: We essentially have to find the variable L, provided the value of the duration of one complete swing, or the period:
![T=2\pi\sqrt{(L)/(980)}\Rightarrow(1)](https://img.qammunity.org/2023/formulas/mathematics/college/sv94u3z4dfrnafgs2jjagy7nkxgzwqsscm.png)
The value of the variable T is a known quantity in the equation (1), therefore plugging it into the equation (1) gives the following equation:
![(1.5)=2\pi\sqrt{(L)/(980)}\Rightarrow(2)](https://img.qammunity.org/2023/formulas/mathematics/college/8ttfi49v3rfm6l6lqz65055w7b2yc5x4p6.png)
The solution is found by solving for the variable L in the equation (2), the steps for the answer are as follows:
![\begin{gathered} \begin{equation*} (1.5)=2\pi\sqrt{(L)/(980)} \end{equation*} \\ \\ \\ ((3)/(2))=2\pi\sqrt{(L)/(980)} \\ \\ (1)/(2\pi)*(3)/(2)=\sqrt{(L)/(980)} \\ \\ \\ ((1)/(2\pi)*(3)/(2))^2=(L)/(980)\rightarrow((1)/(4\pi^2)*(9)/(4))=(L)/(980)\Rightarrow(1)/(\pi^2)*(9)/(16)=(L)/(980) \\ \\ \\ L=((980*9)/(16))*(1)/(\pi^2)=(2205)/(4)*(1)/(\pi^2) \\ \\ \\ L=55.853302482 \\ \\ \\ L\approx55.9cm \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/58339tzg4nktiu2fgdun8qg3lw7bp6mf3b.png)
The answer is 55.9 centimeters or Option C.