![f(x)/g(x)\text{ = }\frac{\sqrt[3]{3x}}{5x\text{ + 2}},\text{ x }\\e-(2)/(5)\text{ (option D)}](https://img.qammunity.org/2023/formulas/mathematics/college/14tr2e1vfvnzeq219knbo4qs4hfu8pecfj.png)
Step-by-step explanation:
(f/g)(x) = f(x)/g(x)
![\begin{gathered} f\mleft(x\mright)=\sqrt[3]{3x} \\ g(x)\text{ = -5x + 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ntmgviyr5ycne9qfs6i9ixt419u2yebksc.png)
![f\mleft(x\mright)/g\mleft(x\mright)\text{ = }\frac{\sqrt[3]{3x}}{5x\text{ + 2}}](https://img.qammunity.org/2023/formulas/mathematics/college/mtvv0d4hn1porf7agfety85a6nr3hu8c1a.png)
We need to find the restriction. That is a number that will make the expression undefined.
That number will cause the denominator to be equal to zero.
we make the denominator to be equal to zero:
5x + 2 = 0
5x = -2
x = -2/5
The number that will make the expression undefined, x = -2/5
![f(x)/g(x)\text{ = }\frac{\sqrt[3]{3x}}{5x\text{ + 2}},\text{ x }\\e-(2)/(5)\text{ (option D)}](https://img.qammunity.org/2023/formulas/mathematics/college/14tr2e1vfvnzeq219knbo4qs4hfu8pecfj.png)