For the given question:
Let the rate of the jet in still air = x
And the rate of the jetstream = y
At the same time ⇒ rate = distance/time
The jet travels 5416 miles against a jetstream In 8 hours
So,
![\begin{gathered} x-y=(5416)/(8) \\ x-y=677\rightarrow(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ixff4fb9r2mrxvyicoil2258in79qzj4t7.png)
and the jet travels 6296 miles with the jetstream In the same amount of time.
So,
![\begin{gathered} x+y=(6296)/(8) \\ x+y=787\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/50gs5f1fbo60j5svdkrosh0tdaanfg93rc.png)
Solving the equations (1) and (2)
So, add the equations to eliminate (y)
![\begin{gathered} 2x=1464 \\ x=(1464)/(2)=732 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ruqgdiln73ko7x6kv9a8pms84dzd4e8p9t.png)
Substitute with (x) into equation (2) to find (y)
![\begin{gathered} 732+y=787 \\ y=787-732=55 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7y1eznpawow6bczailse8f6bnoch1cf8x9.png)
So, the answer will be:
Rate of the jet in still air = 732 mi/hr
Rate of the jetstream = 55 mi/hr