Given:
A Ferris wheel makes 1 revolution per minute, n = 1 rpm
so, the angular speed :
![\omega=(2\pi\cdot n)/(60)=(2\pi\cdot1)/(60)=(\pi)/(30)](https://img.qammunity.org/2023/formulas/mathematics/college/oc2xeh8xn21s5sijrrhkj8iyp401ft4su7.png)
The linear speed of the seats on the rim of the wheel is 2.14 mph
so,
![\begin{gathered} v=\omega\cdot r \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kiwnekkvqird5o4fj74frxjrsv9wio9b7v.png)
convert from mph to ft/sec
hour = 3600 sec
mile = 5280 ft
so,
![2.14(mile)/(hour)=2.14\cdot(5280)/(3600)(ft)/(\sec)=(1177)/(375)(ft)/(\sec )](https://img.qammunity.org/2023/formulas/mathematics/college/4x3mecg3pi9s9z3p21do2poceajc2dolq8.png)
so,
![\begin{gathered} (1177)/(375)=(\pi)/(30)\cdot r \\ \\ r=(30\cdot1177)/(375\pi)=29.97 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mi6xb8mv7zalp2fbxsxml9kuhowj40jshg.png)
So, the answer To the nearest foot is r = 30 ft