Solution
- The object experiences two velocities. We are asked to find the true speed of the object.
- To find the speed of the object, we simply find the resultant of the vectors
- The resultant and direction of the vectors is given as:
![\begin{gathered} R=\sqrt[]{v^2_i+v^2_j} \\ \\ \theta=\tan ^(-1)((v_j)/(v_i)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1nrvs8vtpia31syrham6jjhpb3wdfunmbj.png)
- Now, let us proceed to solve the question.
- The combination of these velocities is given below:
![\begin{gathered} v_1=-60i+3j \\ v_2=4i+14j \\ \\ V=v_1+v_2=-60i+3j+4i+14j \\ V=-56i+17j \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/etic1urmk5uwjvhyuh0xmwcs6oiett5eg3.png)
- Thus, we can apply the formulas above:
![\begin{gathered} R=\sqrt[]{(-56)^2+17^2} \\ \\ R=58.5235 \\ \\ \theta=\tan ^(-1)((17)/(-56))=163.113\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g0dutattomok3klyiacu2b7q73cul0osde.png)
Final Answer
The answer is
58.524, 163° (OPTION 1)