16.8k views
3 votes
Solve the following system. y= 2x^2-3x - 4 and y+ x = 8. Enter the solution with the smaller x value first.

1 Answer

2 votes

EXPLANATION

Given the system of equations:

(1) y= 2x^2-3x - 4

(2) y + x = 8

Subtract the equations:

y= 2x^2-3x - 4

-

y+x=8

y- (y+x) = 2x^2 -3x-4-8


\mathrm{Simplify}
-x=2x^2-3x-12
Switch\text{ sides:}
2x^2-3x-12=-x
\mathrm{Add\: }x\mathrm{\: to\: both\: sides}
2x^2-3x-12+x=-x+x
\text{Simplify}
2x^2-2x-12=0

Applying the quadratic formula:


x_(1,\: 2)=(-b\pm√(b^2-4ac))/(2a)
\mathrm{For\: }\quad a=2,\: b=-2,\: c=-12
x_(1,\: 2)=(-\left(-2\right)\pm√(\left(-2\right)^2-4\cdot\:2\left(-12\right)))/(2\cdot\:2)
x_(1,\: 2)=(-\left(-2\right)\pm\:10)/(2\cdot\:2)
Separate\text{ the solutions}
x_1=(-\left(-2\right)+10)/(2\cdot\:2),\: x_2=(-\left(-2\right)-10)/(2\cdot\:2)

Simplifying:


x=3,\: x=-2

Hence, the solutions are:

x= -2 and x=3

Computing the y-values:


\mathrm{For\: }y=2x^2-3x-4\mathrm{,\: subsitute\: }x\mathrm{\: with\: }3
y=2\cdot\: 3^2-3\cdot\: 3-4
y=5
\mathrm{For\: }y=2x^2-3x-4\mathrm{,\: subsitute\: }x\mathrm{\: with\: }-2
y=2\mleft(-2\mright)^2-3\mleft(-2\mright)-4
y=10

Therefore, the final solutions to the system of equations are:

(x,y) = (-2,10) (x,y)=(3,5)

User Lsheng
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories