Answer:
Given that,
![2+(-8)+32+(-128)+.\ldots_{}](https://img.qammunity.org/2023/formulas/mathematics/college/dyh38rzqmsphbp5awl7z649i7aa0a7mspi.png)
To find the sum of the first 5 terms.
First, to find the first 5 terms of the given sequence.
The given sequence is 2,-8,32,-128,...
It follows geometric series with initial term 2, and common ratio as -4
The explicit formula of the given sequence is,
![t_n=2(-4)^(n-1)_{}_{}](https://img.qammunity.org/2023/formulas/mathematics/college/cnrjqxq488xrowmxyfqsn40ryibn5zv175.png)
To find the 5th term of the sequence,
Put n=5 in the above equation we get,
![t_5=2(-4)^(5-1)](https://img.qammunity.org/2023/formulas/mathematics/college/tzzmtsyxpv5g0vxd4icwjo0bo8nbejh3y3.png)
![t_5=2(-4)^4](https://img.qammunity.org/2023/formulas/mathematics/college/ln1q81f8bktvfukij0b44cr22mah1luuk0.png)
![t_5=2(256)](https://img.qammunity.org/2023/formulas/mathematics/college/bkxzjhpssp5nr4gttq5gnutmzitigbx3ro.png)
![t_5=512](https://img.qammunity.org/2023/formulas/mathematics/college/1h0x0h4e35gjfoc5ul4xzwdhcbwkt5b96c.png)
Since common ratio is less than 1, we get the sum of the series formula as,
![S_n=(a(1-r^n))/(1-r)](https://img.qammunity.org/2023/formulas/mathematics/college/et0114ysm01zr7mkp9qp17eorbkdf9d0u1.png)
Substituting the values we get,
![S_5=(2(1-(-4)^5))/(1+4)](https://img.qammunity.org/2023/formulas/mathematics/college/vhpt8vi8eh37pp89m80bujvm2va6f16du3.png)
![=(2(1+1024))/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/4v35g6fjip1azj4vtba3pl2len35z4so5k.png)
![=(2(1025))/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/fy29o3ese0f7w89leoxpvhywr7rvm9w9x1.png)
![=2(205)](https://img.qammunity.org/2023/formulas/mathematics/college/4wu4qrjbty27pc82q32jpwdox1uf5hjini.png)
![=410](https://img.qammunity.org/2023/formulas/mathematics/college/s3gqw9781tu44egs55adhajchyv8kauhdq.png)
The sum of the first 5 terms of the given series is 410.
Answer is: option B: 410