112k views
1 vote
A standard pair of six-sided dice is rolled. What is the probability of rolling a sum greater than or equal to 11? Express your answer as a fraction or a decimal number rounded to four decimal places

User Barkles
by
8.7k points

1 Answer

4 votes

Given:

A standard pair of six-sided dice is rolled.

Total number of outcomes is 36.

n(S)=36

To find the probability of rolling a sum greater than or equal to 11:

Here, A= {(5, 6), (6,5), (6, 6)}

So, n(A)=3

Hence, the probability of rolling a sum greater than or equal to 11 is,


\begin{gathered} P(A)=(n(A))/(n(S)) \\ =(3)/(36) \\ =(1)/(12) \end{gathered}

Hence, the answer is,


(1)/(12)

User Tornikeo
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories