We want to find the value for which the function,
![f(x)=\sqrt[]{4-x^2}](https://img.qammunity.org/2023/formulas/mathematics/college/35jr0ga68vlk8v3kb20kciz0qprxq3nrvy.png)
not defined as a real number.
The square root of a number is a real number when the number is a positive number.
So, if we put in the values of x , we see that.
![\begin{gathered} \sqrt[]{4-(-2)^2}=\sqrt[]{4-4}=0\text{ this is a real number } \\ \sqrt[]{4-(0)^2}=\sqrt[]{4}=2\text{ this is also a real number} \\ \sqrt[]{4-(2)^2}=\sqrt[]{4-4}=0\text{ this is a real number too} \\ \sqrt[]{4-(4)^2}=\sqrt[]{4-16}=\sqrt[]{-12}\text{ this is NOT a real number} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u5alfsymrdyyjyeugfk8qzmoqncikdl8od.png)
We see that, the value of x that does not return a real number is x = 4, Option DW