34.2k views
0 votes
Hi can you please help me out all the tabs for this question have the same options

Hi can you please help me out all the tabs for this question have the same options-example-1
User G B
by
4.9k points

1 Answer

6 votes

Given

To find the slope and length of each side.

Step-by-step explanation:

It is given that,


H(-3,-2),G(2,-4),F(4,1),E(-1,3)

Since,


Slope=(y_2-y_1)/(x_2-x_1)

Then,


\begin{gathered} Slope\text{ }of\text{ }HE=(3-(-2))/(-1-(-3)) \\ =(3+2)/(-1+3) \\ =(5)/(2) \end{gathered}
\begin{gathered} Slope\text{ }of\text{ }HG=(-4-(-2))/(2-(-3)) \\ =(-4+2)/(2+3) \\ =-(2)/(5) \end{gathered}

Also,


\begin{gathered} Slope\text{ }of\text{ }GF=(1-(-4))/(4-2) \\ =(1+4)/(2) \\ =(5)/(2) \end{gathered}

Since,


EF\perp GF

Then,


Slope\text{ }of\text{ }EF=-(2)/(5)

Also,


\begin{gathered} Length\text{ }of\text{ }HE=√((-3-(-1))^2+(3-(-2))^2) \\ =√((-3+1)^2+(3+2)^2) \\ =√((-2)^2+5^2) \\ =√(4+25) \\ =√(29) \end{gathered}

That implies,


\begin{gathered} Length\text{ }of\text{ }HE=Length\text{ }of\text{ }GF=√(29) \\ =5.39 \end{gathered}

Also,


\begin{gathered} Length\text{ }of\text{ }HG=√((-3-2)^2+(-2-(-4))^2) \\ =√((-5)^2+(-2+4)^2) \\ =√(25+4) \\ =√(29) \\ =5.39 \end{gathered}

Then,


Length\text{ }of\text{ }HG=Length\text{ }of\text{ }EF=5.39

Hence,


undefined

Hi can you please help me out all the tabs for this question have the same options-example-1
User Ullas Hunka
by
5.4k points