144k views
1 vote
Use the Binomial Theorem to expand the binomial and express the result in simplified form.

Use the Binomial Theorem to expand the binomial and express the result in simplified-example-1
User Murali B
by
5.6k points

1 Answer

3 votes

The Solution:

Given:


(5x-y)^5

We are required to use the Binomial Expansion to expand the given expression.

The formula for Binomial expansion is:


\left(a+b\right)^(n)=\sum_(i=0)^(n)\binom{n}{i}a^(\left(n-i\right))b^(i)
\left(5x+(-y)\right)^5=\sum_(i=0)^5\binom{5}{0}(5x)^(\left(5-0\right))(-y)^0
\begin{gathered} =(5!)/(0!\left(5-0\right)!)\left(5x\right)^5\left(-y\right)^0+(5!)/(1!\left(5-1\right)!)\left(5x\right)^4\left(-y\right)^1+(5!)/(2!\left(5-2\right)!)\left(5x\right)^3\left(-y\right)^2+ \\ \\ (5!)/(3!\left(5-3\right)!)\left(5x\right)^2\left(-y\right)^3+(5!)/(4!\left(5-4\right)!)\left(5x\right)^1\left(-y\right)^4+(5!)/(5!\left(5-5\right)!)\left(5x\right)^0\left(-y\right)^5 \end{gathered}
(5x+(-y))^5=3125x^5-3125x^4y+1250x^3y^2-250x^2y^3+25xy^4-y^5

Therefore, the correct answer is:


3125x^5-3125x^4y+1250x^3y^2-250x^2y^3+25xy^4-y^5

User Timothy James
by
5.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.