144k views
1 vote
Use the Binomial Theorem to expand the binomial and express the result in simplified form.

Use the Binomial Theorem to expand the binomial and express the result in simplified-example-1
User Murali B
by
8.6k points

1 Answer

3 votes

The Solution:

Given:


(5x-y)^5

We are required to use the Binomial Expansion to expand the given expression.

The formula for Binomial expansion is:


\left(a+b\right)^(n)=\sum_(i=0)^(n)\binom{n}{i}a^(\left(n-i\right))b^(i)
\left(5x+(-y)\right)^5=\sum_(i=0)^5\binom{5}{0}(5x)^(\left(5-0\right))(-y)^0
\begin{gathered} =(5!)/(0!\left(5-0\right)!)\left(5x\right)^5\left(-y\right)^0+(5!)/(1!\left(5-1\right)!)\left(5x\right)^4\left(-y\right)^1+(5!)/(2!\left(5-2\right)!)\left(5x\right)^3\left(-y\right)^2+ \\ \\ (5!)/(3!\left(5-3\right)!)\left(5x\right)^2\left(-y\right)^3+(5!)/(4!\left(5-4\right)!)\left(5x\right)^1\left(-y\right)^4+(5!)/(5!\left(5-5\right)!)\left(5x\right)^0\left(-y\right)^5 \end{gathered}
(5x+(-y))^5=3125x^5-3125x^4y+1250x^3y^2-250x^2y^3+25xy^4-y^5

Therefore, the correct answer is:


3125x^5-3125x^4y+1250x^3y^2-250x^2y^3+25xy^4-y^5

User Timothy James
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories