The formula for the discriminant (D) of a quadratic equation is,
![D=b^2-4ac](https://img.qammunity.org/2023/formulas/mathematics/college/10i49byp4hi2dnkj3t3hcm4pmzk7llckdy.png)
The given quadratic equation is,
![5x^2-7x+1=0](https://img.qammunity.org/2023/formulas/mathematics/college/713xh7m2z7uip4x522k86zersr8ng4oydm.png)
The general formula for quadratic equation is,
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
Comparing the general quadratic formula with the quadratic equation given, we have
![\begin{gathered} a=5 \\ b=-7 \\ c=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zaihq22bcdaakqrfbcv73u3ntniigrcypa.png)
Solving for the discriminant
![\begin{gathered} D=(-7)^2-4(5)(1)=49-20=29 \\ \therefore D=29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ax5wr56ckdtafvjbb6lznnr4qeaf58b2o3.png)
Hence, the discriminant of the quadratic equation(D) is 29.
Let us now solve for the number of real solutions
Since D > 0,
Hence, the quadratic equation has 2 real solutions.
The graph of the quadractic equation will be shown below
Finally,
![\begin{gathered} \text{Discriminant}=29 \\ N\text{umber of real solutions= 2 real solutions} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ggd9ukes342g4q7iifiuum26c19cvgoko4.png)