The most general form of a sne equaion is shown below
![\begin{gathered} y=Asin(B(x-C))+D \\ A\rightarrow\text{ amplitude} \\ B\rightarrow period=(2\pi)/(B) \\ C\rightarrow\text{ horizontal shift} \\ D\rightarrow\text{ vertical shift} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/efh7e4p90yk512x9ypfmk9frdutwzoqry9.png)
In our case, the midine of the function is at 8(8-2)/2=3; then, 2+3=5. The midline is at y=5.
Now, since at t=0 the function is at its lowest point,
![\Rightarrow y=3sin(Bt-(\pi)/(2))+5](https://img.qammunity.org/2023/formulas/mathematics/college/q28pktk26w5zjhjnx4xpb0knqlh8fczg07.png)
Finally, regarding the period of the function, since every 16 hours, the function completes a full cycle,
![B=(2\pi)/(16)](https://img.qammunity.org/2023/formulas/mathematics/college/krkbqy9rgtflqnih9f0p11hmk5t97b805z.png)
Therefore,
![y=3sin((2\pi)/(16)t-(\pi)/(2))+5](https://img.qammunity.org/2023/formulas/mathematics/college/wurftye2oxpf3xg433wzkeooaeohkdmikq.png)
The amplitude is 3, the period is 2pi/16 and the midline is y=5.