Since the distance varies directly as the square of time, then its expression looks like this:
![d\text{ = k}\cdot t^2](https://img.qammunity.org/2023/formulas/mathematics/college/aypxg8lk3t5kjyjhpswtq709k97ihdqdwd.png)
Where d is the distance, "k" is the proportionality constant and t is the time the object is falling. We know that after 6 seconds the stone travels 304 feet. With this information we can determine the value of "k".
![\begin{gathered} 304=k\cdot(6)^2 \\ 304=k\cdot36 \\ k=(304)/(36) \\ k=8.44 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iglmysj5631k139ae90tdai74e0nw31f55.png)
Therefore the complete expression is:
![d=8.44\cdot t^2](https://img.qammunity.org/2023/formulas/mathematics/college/o3b2l3tw7wehr7t0qtjewim51v2ttqbov1.png)
We want to know the distance after 7 seconds, therefore t = 7.
![\begin{gathered} d=8.44\cdot(7)^2 \\ d=8.44\cdot49=413.56\text{ feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qe3nfbqjojn5u2d4jgjzm6cnkwdh68x0a1.png)
The stone will travell approximatelly 314 feet in 7 seconds.