Answer:
Explanation:
Given the expression:
![3y^2+5y-2](https://img.qammunity.org/2023/formulas/mathematics/college/94ejsxda87a2bx8o5bv06df1g5elihlghc.png)
We want to write the given expression in the form:
![(ay-b)(y+c)](https://img.qammunity.org/2023/formulas/mathematics/college/yseysc5dsstqiy0pxs3whq9n78ocb5vudv.png)
That is, to factorize the expression.
When an expression is to be factorized, follow the steps below:
Step 1: Multiply the coefficient of x² and the constant.
![-2*3y^2=-6y^2](https://img.qammunity.org/2023/formulas/mathematics/college/7xwwf313rdm9gz2yi9i39z6mw01b85cplb.png)
Step 2: Find two terms that multiply to give the product -6y², and add to give the middle term, 5y. To do this, list the factors of -6: 1, 2,3, and 6
![\begin{gathered} 6y*-1y=-6y^2 \\ 6y+-y=5y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/og71llhuopdy836z7r4w4oh69aksnlzazk.png)
Step 3: Rewrite the middle term, 5y with those numbers.
![\begin{gathered} 3y^(2)+5y-2 \\ =3y^2+6y-y-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6iuxsh86whiwigzq9p9880wv7e68otixvc.png)
Step 4: Factor the first two and last two terms separately. Ensure that the expression in the brackets is the same.
![\begin{gathered} =3y(y+2)-1(y+2) \\ =(3y-1)(y+2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hkwxz15e5l9r91p7fub19limtmxmqggs1v.png)