Given the points:
(x1, y1) ==> (4, 2)
(x2, y2) ==> (5, 4)
Let's find the line passing through the points in slope-intercept form.
Apply the slope-intercept form of a linear equation:
y = mx + b
Where m is the slope and b represents the y-intercept.
To find the slope, m, apply the formula:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Thus, we have:
![\begin{gathered} m=(4-2)/(5-4) \\ \\ m=(2)/(1) \\ \\ m=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kpl3yl48c7676b3aonz554j52pyqmial6y.png)
The slope, m is 2.
We have:
![y=2x+b](https://img.qammunity.org/2023/formulas/mathematics/college/nk11drug5mf634j25zir7448whk9rp74rq.png)
Plug in the values of one point for x and y to solve for b.
Take the first point:
(x, y) ==> (4, 2):
![\begin{gathered} 2=2(4)+b \\ \\ 2=8+b \\ \\ Subtract\text{ 8 from both sides:} \\ 2-8=8-8+b \\ \\ -6=b \\ \\ b=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lqb2s37uqjhpmes59gvg5xnjgnlhmvoas2.png)
Therefore, the y-intercept, b, = -6.
The equation of the line passing through the points in slope-intercept form is:
![y=2x-6](https://img.qammunity.org/2023/formulas/mathematics/college/8vt75rlttvqyq8ve2zahjih7sdjnatvkpv.png)
• ANSWER:
![y=2x-6](https://img.qammunity.org/2023/formulas/mathematics/college/8vt75rlttvqyq8ve2zahjih7sdjnatvkpv.png)