Answer:
48 cm²
Explanation:
First, we find the length of HP in the right triangle HPQ using the Pythagorean Theorem.
![\begin{gathered} HQ^2=HP^2+PQ^2 \\ 10^2=HP^2+6^2 \\ HP^2=10^2-6^2=100-36=64 \\ HP^2=8^2 \\ \implies HP=8\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xnk30mwmcb064evo9wbgbdx4l6gzwlaea0.png)
Therefore:
• The height of the parallelogram, HP = 8cm
,
• The base of the parallelogram, PQ = 6m
The area of a parallelogram is calculated using the formula:
![Area=Base* Height](https://img.qammunity.org/2023/formulas/mathematics/college/6m6n3j5gre1tbd84moqmcw26a2cjtb2uyw.png)
Substitute the values given above:
![Area=6*8=48\;cm^2](https://img.qammunity.org/2023/formulas/mathematics/college/87awwpn8xqeoxvsptlh1qqh3xmwvrzcwr9.png)
The area of the parallelogram is 48 cm².