Let's solve the equations.
1.
![\begin{gathered} 4(k-8)=-32+4k \\ 4k-32=-32+4k \\ 4k-4k=32-32 \\ 0=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ufo57f5ecafv2b7tz2qur29f9yi74j219.png)
Since by solving the equation we get an equality that always hold the equation has an infinite number of solutions.
2.
![\begin{gathered} 36-7p=-7(p-5) \\ 36-7p=-7p+35 \\ 7p-7p=-36+35 \\ 0=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rmdg42s1ormac4to6utmvx8mfzjo1acza6.png)
Since this is a contradiction the equation does not have a solution.
3.
![\begin{gathered} 8x+38=-3(-6-4x) \\ 8x+38=18+12x \\ 8x-12x=18-38 \\ -4x=-20 \\ x=(-20)/(-4) \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qcublx23c1tv58r4h8b40p4bsjtr2x4f0e.png)
Therefore, this equation has one solution.
4.
![\begin{gathered} 30+6p=7(p+6)-5 \\ 30+6p=7p+48-5 \\ 30+6p=7p+43 \\ 30-43=7p-6p \\ p=-13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/724pkz51hzqylgdgrcpeim0lg7ogylfd3w.png)
Therefore, this equation has one solution.
5.
![\begin{gathered} 3+5n=5(n+2)-7 \\ 3+5n=5n+10-7 \\ 3+5n=5n+3 \\ 5n-5n=3-3 \\ 0=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o4nj1u3ydszqgizyto0c8k8fkh8o7ema5r.png)
Since by solving the equation we get an equality that always hold the equation has an infinite number of solutions.
6.
![\begin{gathered} -2(v-2)=-3-2v \\ -2v+4=-3-2v \\ 4+3=2v-2v \\ 7=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n7zuyjf5qn5u6v6h3cuw9kqdqlwre78g5o.png)
Since this is a contradiction the equation does not have a solution.