To simplify the calculations, you can set the following system of equations that is equivalent to the given system. Multiply the first equation by 4, and the second by 3:
![\begin{gathered} 12x+20=64, \\ 12x-27y=-30. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h4z0t7lo97qk3q813fm57yte38w52hfmfx.png)
Subtracting the second equation for the first one, you get:
![\begin{gathered} 12x+20-12x+27y=64+30, \\ 47y=94, \\ y=(94)/(47), \\ y=2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i7q1g0o05detb9dv6tg8jqk1xgjyfak33z.png)
Substituting y=2 in the first equation and solving for x, you get:
![\begin{gathered} 3x+5(2)=16, \\ 3x+10=16, \\ 3x=16-10, \\ 3x=6, \\ x=(6)/(3), \\ x=2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7ccfnge1if21uwozl8agzbrsq70gd0veb.png)
Answer:
![x=2,y=2.](https://img.qammunity.org/2023/formulas/mathematics/college/n6tsi9wqj3vtly0m7m5wheqjbeufamsg76.png)