212k views
3 votes
In the equation shown, p is a constant. If the equation has no real solutions, which could be the value ofp?2x² + px + 4 = 0Select all that apply.A-10B-5C 0D 5E 10UECO

In the equation shown, p is a constant. If the equation has no real solutions, which-example-1

1 Answer

2 votes

To find:

The value of p for which there are no real solutions.

Solution:

The equation is 2x^2 + px + 4 = 0.

Now, the discriminant of a quadratic equation ax^2 + bx + c = 0 is given by:


d=b^2-4ac

If d < 0, then the equation does not have real solutions. So, for the given equation, there are no real solutions when:

[tex]\begin{gathered} p^2-4(2)(4)<0 \\ p^2<32 \\ -5.65

So, the possible values of p from the given options is -5, 0, 5.

Thus, options B,C,D are correct.

User Andy Gherna
by
4.8k points