188k views
0 votes
Solve the following quadratic equation using the quadratic formula. FORMULA IN PIC ATTACHED. 2x^2 + 5 = -3x

Solve the following quadratic equation using the quadratic formula. FORMULA IN PIC-example-1
User Hyc
by
8.3k points

1 Answer

1 vote

Given Question


\begin{gathered} 2x^2+5\text{ = -3x} \\ Step1\colon\text{rearrange the eqaution to be in the form of a quadratic equation} \\ 2x^2+5\text{ +3x = 0} \\ 2x^2\text{ +3x +5 = 0} \end{gathered}

Step 2

Define and assign values to the quadratic formula given


y\text{ =}\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}
\begin{gathered} \text{From the general quadratic equation} \\ ax^2+bx+c=0 \\ a\text{ =2} \\ b=\text{ 3} \\ c\text{ =5} \end{gathered}
\begin{gathered} \text{Step 3} \\ \text{substitute those values into the formula and solve for x} \\ x=\frac{-3\pm\sqrt[]{3^2-4*2*5}}{2*2} \\ x=\frac{-3\pm\sqrt[]{9-40}}{4} \\ x=\frac{-3\pm\sqrt[]{-31}}{4} \\ x=\frac{-3\pm\sqrt[]{-1}*\sqrt[]{31}}{4} \\ \text{but i = }\sqrt[]{-1},\text{ therefore} \\ x\text{ =}\frac{-3\pm\sqrt[]{31}i}{4} \end{gathered}
\begin{gathered} x\text{ = }\frac{-3+\sqrt[]{31}i}{4} \\ x\text{ = -}(3)/(4)+\frac{\sqrt[]{-31}}{4} \\ or\text{ } \\ x\text{ = }\frac{-3-\sqrt[]{31}i}{4} \\ x\text{ = -}(3)/(4)-\frac{\sqrt[]{-31}}{4} \\ \end{gathered}

Therefore,

Solve the following quadratic equation using the quadratic formula. FORMULA IN PIC-example-1
Solve the following quadratic equation using the quadratic formula. FORMULA IN PIC-example-2
User Marc Claesen
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories