Answer:
x = 8 or x = 2
Step-by-step explanation:
Given the below quadratic equation;
![x^2-10x+16=0](https://img.qammunity.org/2023/formulas/mathematics/college/vj30uudjdqn61hldhp79mpbwtloh0m45ir.png)
To solve the above using the completing the squares method, we'll have to follow the below-outlined steps;
1. Subtract 16 from both sides of the equation;
![\begin{gathered} x^2-10x+16-16=0-16 \\ x^2-10x=-16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nxslcxgmk7w120mc2remp1us8yden9ugb6.png)
2. Add 1/2 of the coefficient of x squared to both sides of the equation;
![\begin{gathered} x^2-10x+((-10)/(2))^2=-16+((-10)/(2))^2 \\ x^2-10x+25=-16+25 \\ x^2-10x+25=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/66h7nfsvzc6q2jj6ow3hsdhtw6lashkujr.png)
3. Factor the left-hand side of the equation into a perfect square;
![(x-5)^2=9](https://img.qammunity.org/2023/formulas/mathematics/college/yhqp1vhtfmvespmtkohtjsex948mr488ky.png)
4. Let's go ahead and take the square root of both sides and solve for x;
![\begin{gathered} x-5=\sqrt[]{9} \\ x-5=3 \\ x=8 \\ Or \\ x-5=-3 \\ x=5-3 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z08hsqf68our65zx8subkvwtw0266rki88.png)