Solution:
Vertical angles are a pair of opposite angles formed by intersecting lines. re vertical angles. Vertical angles are always congruent.
These two angles (140° and 40°) are Supplementary Angles because they add up to 180°:
Notice that together they make a straight angle.
Hence,
From the image
The following pairs form vertical angles
![\begin{gathered} \angle1=\angle3(vertical\text{ angles)} \\ \angle2=\angle4(vertical\text{ angles)} \\ \angle5=\angle7(vertical\text{ angles)} \\ \angle6=\angle6(vertical\text{ angles)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dtn8p5lsvhxdvdzwo3smdtsheuf2gjxjiz.png)
Hence,
One pair of the vertical angles is ∠1 and ∠3
Part B:
Two angles are said to be supplementary when they ad together to give 180°
Hence,
From the image,
The following pairs are supplementary angles
![\begin{gathered} \angle5+\angle6=180^0(supplementary\text{ angles)} \\ \angle5+\angle8=180^0(supplementary\text{ angles)} \\ \angle7+\angle8=180^0(supplementary\text{ angles)} \\ \angle6+\angle7=180^0(supplementary\text{ angles)} \\ \angle1+\angle2=180^0(supplementary\text{ angles)} \\ \angle1+\angle4=180^0(supplementary\text{ angles)} \\ \angle2+\angle3=180^0(supplementary\text{ angles)} \\ \angle3+\angle4=180^0(supplementary\text{ angles)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u1obmj2gm4um80ce58d7migfxnw2y8fxpc.png)
Hence,
One pair of supplementary angles is ∠5 and ∠6