From the statement, we know that:
![m\angle ABC=110^(\circ)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/fourhfvjwoi490q0rhkw4mdo6y8m8ek30e.png)
If we extend the segments AD and BC, we have:
From the picture, we see that:
1) The angle m∠SBA is the complement angle of m∠ABC, so we have:
![\begin{gathered} m\angle\text{SBA + m}\angle ABC=180^(\circ), \\ m\angle\text{SBA }=180^(\circ)-\text{ m }\angle ABC, \\ m\angle\text{SBA = }180^(\circ)-110^(\circ)=70^(\circ). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/phj36vfscc4pir1m60qdeptux2myhqsd9a.png)
2) m∠SBA and m∠WAZ are congruent angles, so we have:
![m\angle WAZ=m\angle SBA=70^(\circ)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/1v7qrifn2tlqc8qjhw9cj2lwm29oz5qlev.png)
3) Finally because m∠WAZ and m∠BAD are opposite angles, they must be equal:
![m\angle\text{BAD}=70^(\circ)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/2ckrky5kx7vtkhsiqox7n93qcdmqr6p5v2.png)
Answer
m∠BAD = 70°