Given the equation:
![\sqrt[]{3x+7}=-4](https://img.qammunity.org/2023/formulas/mathematics/college/xmx0ofnw0asy72pu0oj39i98iq5rpge0ic.png)
Since x = 3 was obtained, let's input 3 for x in the equation to verify.
Substitute x for 3 in the equation:
![\begin{gathered} \sqrt[]{3(3)+7}=-4 \\ \\ \sqrt[]{9+7}=-4 \\ \\ \sqrt[]{16}=-4 \\ \\ 4\text{ = -4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8go1uc9lz0cpghjd64skmnyjwlsc1u4w94.png)
We can see that x ≠3
Therefore, we can say that the solution x=3 deos not satisfy the original equation.
Let's also input x= -3:
![\begin{gathered} \sqrt[]{3(-3)+7}=-4 \\ \\ \sqrt[]{-9+7}=-4 \\ \\ \sqrt[]{-2}=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uby6l2xz69gdp3wblkppaxbwx733nu9g2a.png)
The solution x = 3 also does not satisfy the original equation.
Let's input x = -1/3
![\begin{gathered} \sqrt[]{3(-(1)/(3))+7}=-4 \\ \\ \sqrt[]{-1+7}=-4 \\ \\ \sqrt[]{6}=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s0h7pbzn02xlj0k4lxoiouff7s5uusrmcb.png)
The solution x = -1/3 also does not satisfy the original equation.
ANSWER:
It does not satisfy the original equation