Since the tree was broken and the top part forms an angle with the ground, therefore the height of the tree is x+y,
Given the horizontal distance and the angle formed with the ground,
![\begin{gathered} \theta=56^0 \\ \text{Adjcent = 110ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ait1ztje8ixsmx186ejsuwzwyjc7i1krni.png)
Using SOHCAHTOA, to find x (the vertical part of the broken tree),
![\begin{gathered} \tan \theta=(Opp)/(Adj) \\ \text{Opp = x} \\ \text{Adj = 110ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p6vqrzu0gdr83gjs3ngldi4fbdgw8unm90.png)
Substituting the values into the formula above,
![\begin{gathered} \tan 56^0=(x)/(110) \\ \text{Crossmultiply} \\ x=\tan 56*110=1.4826*110=163.1ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t70dte51vn0dm908uz4etmi1ajagi6l3kt.png)
Using the Pythagorean theorem to find y,
![\begin{gathered} y^2=x^2+110^2 \\ y^2=163.1^2+110^2 \\ y^2=26601.61+12100 \\ y^2=38701.61 \\ y=\sqrt[]{38701.61} \\ y=196.7ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v843iojnc9ilbjy48arl22qikppybeqjet.png)
The height of the tree before it got broken is,
![x+y=163.1+196.7=359.8ft](https://img.qammunity.org/2023/formulas/mathematics/college/gitrxijinbilsdqpcwqzxbaz5o216tlei6.png)
Hence, the height of the tree is 359.8 feet.