37.0k views
5 votes
a glider leaves a cliff 1 km high at an angle of depression of 4 degrees. how far from the base of the cliff will the glider land in meters? (1 km = 1000 meters)

1 Answer

0 votes

14300 meters

Step-by-step explanation

we need assume a rigth triangle and then,

Step 1

Let

opposite side=height= 1000 mt

adjacent side=distance from the base tof the cliff ot the place where the glider lands=x

angle= 4

now, we need a function that relates those measures


\begin{gathered} \tan \partial=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \end{gathered}

replace,


\begin{gathered} \tan \partial=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan 4=\frac{1000}{\text{x}} \end{gathered}

Step 2

now, solve for x


\begin{gathered} \tan 4=\frac{1000\text{ mt}}{\text{x}} \\ x\cdot\tan \text{ 4=1000 mt} \\ x=\frac{1000\text{ mt}}{\tan4}=(1000)/(0.069926) \\ x=14300\text{ meters} \end{gathered}

I hope this helps you

a glider leaves a cliff 1 km high at an angle of depression of 4 degrees. how far-example-1
User Laoqiren
by
4.1k points