Answer:
m X H = [-9 36 -9/2]
Step-by-step explanation:
First, let's find m:
Since the first two matrices are equal:
Now, let's find H:
Let's say H = [H₁ H₂ H₃]
So,
([H₁ H₂ H₃] + [1 4 -2]) + [3 2 -6] = [-2 8 -1] + ([1 4 +2] + [3 2 -6])
We can sum the matrixes of each side of the equality and compare with the other side:
[H₁ H₂ H₃] + [1 4 -2] + [3 2 -6] = [-2 8 -1] + [1 4 -2] + [3 2 -6]
H₁ + 1 + 3 = -2 + 1 + 3
H₁ + 4 = 2
H₁ = -2
H₂ + 4 + 2 = 8 + 4 + 2
H₂ + 6 = 14
H₂ = 14 - 6
H₂ = 8
H₃ - 2 - 6 = -1 - 2 - 6
H₃ - 8 = -9
H₃ = -9 + 8
H₃ = -1
So,
H = [-2 8 -1]
And,
m X H = 9/2 [-2 8 -1]
m X H = [9/2*(-2) 9/2*(8) 9/2*(-1)]
m X H = [-9 36 -9/2]