Answer:
![\begin{gathered} \sin \theta=\frac{4\sqrt[]{15}}{23} \\ \cos \theta=(17)/(23) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dill4n44wqlay9zxb633r1yk52p2luixxr.png)
Step-by-step explanation:
In a unit circle, the radius = 1 unit
The terminal side of angle θ intersects the unit circle in the first quadrant at x= 17/23.
From the equation of a unit circle, we have:

Substitute the given value of x:
![\begin{gathered} ((17)/(23))^2+y^2=1^2 \\ y^2=1-((17)/(23))^2 \\ y^2=(240)/(529) \\ y=\pm\sqrt[]{(240)/(529)} \\ y=\pm\frac{4\sqrt[]{15}}{23} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qkcf6lx2ut4pljzqx99boqucgmhwxx7zo1.png)
Since angle θ is in the first quadrant, we take the positive value of y:
Therefore:
![\begin{gathered} \sin \theta=(y)/(r) \\ \sin \theta=\frac{\frac{4\sqrt[]{15}}{23}}{1} \\ \sin \theta=\frac{4\sqrt[]{15}}{23} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tqc2tilflpjd4o43by7ajsxrx08y0dyonh.png)
Similarly:
