SOLUTION
Write out the given expression
![\begin{gathered} P=120.7e^(kt) \\ t=\text{The year} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/flry7xovsz7cg3jut9chkzqj6sm3ftxreg.png)
In 2009, the population is 167,025 implies
![\begin{gathered} t=9 \\ P=167,025 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e4wvckmabqgtt2nehq8nwjsuttxlr62tep.png)
To obtain the value of K, substitute the given value into the expression
![\begin{gathered} 167,025=120.7e^(k(9)) \\ 167,025=120.7e^(9k) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6nia15x495b2c97clrren8m6zy4x6czpuj.png)
Divide both sides by 120.7
![\begin{gathered} (167025)/(120.7)=e^(9k) \\ \text{Then} \\ 1383.8028=e^(9k) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rxntz5kgrpbz287e68vh5flzrzecmcexsf.png)
Then take natural logarithm of both sides
![\begin{gathered} ln1383.8028=\ln e^(9k) \\ \text{Then} \\ ln1383.8028=9k \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mo7ba2hfzawe2wy0158ryh2qbg261j6rew.png)
Then, Divide both sides by 9
![\begin{gathered} k=(ln1383.8028)/(9) \\ \text{Then} \\ k=0.8036 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2zfqa7ldwgwq2uxmg7fxq9es91h7h3unu0.png)
Therefore
The value of k is 0.8036
B).Using the given model, the population in 2020 will be
![\begin{gathered} \text{For the 2020, } \\ t=20 \\ k=0.8036 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/35ih0rf56lccybbhfi93yxi60wii73k6lj.png)
The population will be
![\begin{gathered} P=120.7e^(kt) \\ P=120.7e^(0.8036(20)) \\ P=1152625393 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1h2k5iqes8smvck6ed9wd5e1vd39zhdx8x.png)
Therefore, the population in 2020 is 1152625393 thousand people
The Population for 2025 will be
![\begin{gathered} k=0.8036 \\ t=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u0v6da01ju48mekwc9mrmw9xj8pvy2w4ju.png)
Then
![\begin{gathered} P=120,7e^(0.8036(25)) \\ P=120.7e^(20.09) \\ P=120.7*530855280.2 \\ P=6.407*10^(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrbkqcn8ndgln2atc0abcm2xzs30itsong.png)
Therefore, the population for 2025 is 6.407x10^10
C).P=220,000
![\begin{gathered} P=120.7e^{^(kt)} \\ \text{Where } \\ P=220000 \\ k=0.8036 \\ t=\text{?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iq7xzxzz3r3m12t8f3wxbdyijoyj8otpii.png)
Then substitute the values into the expression
![\begin{gathered} 220000=120.7e^(0.8036t) \\ \text{Divide both sides by 120.7} \\ (220000)/(120.7)=(120.7e^(0.8036t))/(120.7) \\ \\ 1822.7009=e^(0.8036t) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kit9b1okq70sodm0nfnfg7d6pb06e0itxz.png)
Take the natural logarithm of the equation in the last line
![\begin{gathered} \ln 1822.7009=\ln e^(0.8036t) \\ \ln 1822.7009=0.8036t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t7n9kg2qqbsz76drly3qp6nrcul9et80zv.png)
Then divide both sides by t
![\begin{gathered} (\ln 1822.7009)/(0.8036)=(0.8036t)/(0.8036) \\ (7.5081)/(0.8036)=t \\ t=9.34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o07j1z2e0j29sm6q9zsw01q2y1nthcsb1i.png)
Hence
The population will reach 220000 in 9years